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imperfection elastic instability. When the crystal is cooled to below the equi­
librium transformation temperature, these regions (which were previously trans­
formed) propagate through the crystal, transforming the entire crystal to the 
closest packed phase. As an example, consider the core of a dislocation. Usually 
there is a dilatation of two atomic volumes per atom length of dislocation. 
A crude model assumes that linear elasticity describes the stress field of the 
dislocation which is postulated to be hollow. The stress field a rises from the 
rigid displacement and the presence of an in ternal pressure P in the cylindrical 
core. If P = B j6, this model leads to the expected dilatation. For lithium the 
quant,ity B j6 represents a pressure of approximately 22 kbar. Although C' at 
P = 0 is not zero , there exists the possibility that dC' jdP is negative so that C' 
might in fact be zero at the pressure assumed to be present in the core. 

1.4 'l'lle01'eticlIt pl'edictiollS oj ellis tic {"oJ/stemts 

The pioneering work in the area of calculating the elastic properties of metals 
was performed in the mid-thirties by Wigner and Seitz [20 to 22], Bardeen [23] 
and Fuchs [24]. The latter approach yielded elastic constants other than the 
bulk modulus, and has been varied [25 to 2S] to explain discrepancies between 
observed and calculated data. Since the mid-sixties an approach applying pseu­
dopotential theory [29 to 32] has enabled theorists to ca lculate various proper­
ties, including the elastic constants, of thc simple metals and to predict elastic 
constant values which agree well with recently reported experimental results. 

In the present paper results are presented which show that a bulk instability 
does not exist. Moreover, the present evidence tends to rule out the imperfec­
tion elastic instability mechanism (but not cOIllpletely). Finally, we show that 
the agreement between the measured pressure derivatives and theoretically 
predicted values at 0 OK is fa ir. 

2. J~xperil1lcll tal Techniques 

A pulsed ultrasonic interferometer was used to measure the elastic constants 
of the lithium single crystals. The pulse system is described in detail elsewhere 
[33], as are the temperature and pressure control systems [34]. 

The scarcity of single crystal data on lithium metal is primarily due to the 
difficulty of obtaining large single crystals. Bender [35] made unsuccessful at­
tempts to grow lithium single crystals although he was able to obtain large 
single crystals of both sodium and potassium. Bowers et al. [36] reported a suc­
cessfulmethod for producing small (0 .63 cm diameter) cyl indrical single crystals. 
The procedure originated by Nash and Smith [IS] was used to produce the 
crystals for the present research. 

The ultrasonic specimen preparation for lithium follows those procedures for 
sodium outlined by Martinson [33]. The etching and cleaning solutions used were 
anhydrous diethyl-ether and methyl alcohol , respectively. The final sample size 
was approximately (1.5 X 1.0 X 1.0) cm3• 

3. Data Analysis 

The analysis of the results of the experiments (frequencies at sets of T, P) 
was carried out in the following manner: 

1. The transit times were corrected to take into accolmt the presence of 
a transducer. 
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2. The length lo at temperature T and atmospheric pressure was computed 
from thermal expansion data. 

3. The length l at T , P was computed as described later. 
4. A least square analysis was then used at each temperature with 0 having 

the linear form 

dO l 0 = Olp =O.T + dP P. 
P=O.T 

The equation for the transit time is 

2. = n-t +p + kU;;l - /(1
), 

nP 

(1) 

(2) 

where 2. is the round trip transit time of the sample, In is the frequency at which 
interference occurs, n is an integer associated with the frequency In, p is the dif­
ference between the number of round trips of the two pulses, k is the ratio of the 
transducer to sample acoustic impedances, and 10 is the free resonance frequency 
of the transducer. The elastic constant is calculated from the following formula: 

l2 
0= e .2' (3) 

where e and l are the sample density and length, respectively. The temperature 
and pressure variation of the resonance frequency of the transducer are taken 
from McSkimin and Andreatch [37] and the length change variation of the 
lithium sample with temperature is from Pearson [38]. Cook's analysis [39] was 
used to evaluate the length change of the sample resulting from the application 
of hydrostatic pressure. This involved the calculation of the conversion factor 
,1 at temperature and pressure. The specific heat data of Martin [40] was used in 
addition to Pearson's data to calculate ,1 as defined by 

{J2BST 
,1 = -­

eOp , 
(4) 

where {J is the volume thermal expansion coefficient, 0 p is the heat capacity at 
constant pressure, BS is the adiabatic bulk modulus, and T is the absolute tem­
perature. 

4. Results 

Transit time measurements were made which resulted in values of 

0' = (Ou - Od/2 , Of 1 , and O~ = Ofl - 0' + 044 , 

The values of 044, BS, and BT were calculated from the three measured constants 
using the well-known relations 

044 = O~ - Ofl + 0' , (5) 

(6) 
and 

I 


